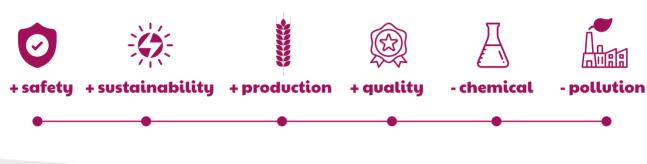


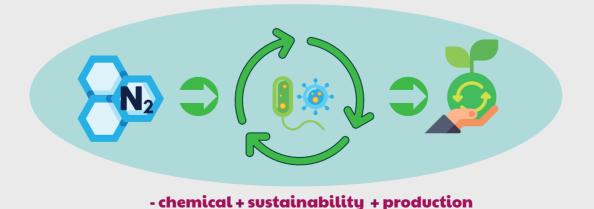
+ sustainability



Produce more produce healthy!

Green Path is Agriges' practical response to the challenges of modern agriculture. The focus of the Green Path project is to provide technical means for abundant, environmentally sustainable and food-safe production: **produce more, produce healthy**.

The project involves Agriges working with research institutes, experimental centres, universities, cooperatives and farms to develop products that maximise yields, thereby reducing the use of potentially polluting chemical substances.

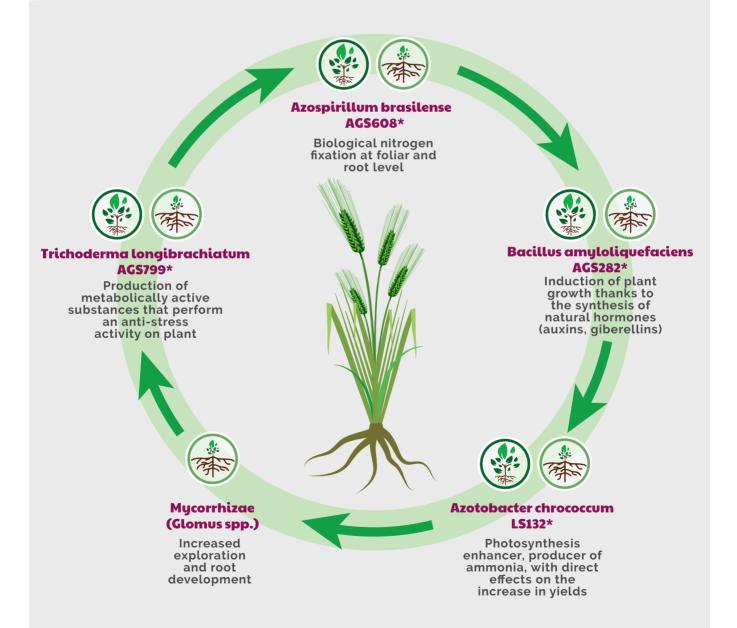


OBJECTIVE:

An innovative approach to nitrogen fertilisation

With the 'Farm to Fork' strategy at the heart of the Green Deal, the European Union has embarked on a course of action that aims, among other measures, to reduce by 2030 the nutrient losses occurring in the environment due to the excessive use of chemical fertilisers by at least 50%; this will involve **reducing the use of fertilisers by at least 20%**. In this context, worsened, moreover, by strong climate change and unstable commodity prices, it is more necessary than ever to review the fertilisation of agricultural crops with an innovative and sustainable approach with the aim of **maximising the plant's ability to assimilate nutrients, especially nitrogen**.

Nitrogen is an essential nutrient for plant growth, due to the high amount used, and is **the most abundant gas in the earth's atmosphere, of which it makes up about 78%**. In gaseous form, nitrogen cannot be absorbed directly by the plant, which in nature must instead make use of the nitrogen present in the soil. Within the soil, the plant's ability to assimilate nitrogen varies depending on its availability in the circulating solution; the share of **absorbable nitrogen is limited and subject to loss or immobilisation of various kinds:** percolation and/or leaching, adsorption to the surfaces of clays and organic matter, volatilisation, etc.


AZO SMART

A unique microbial consortium

Azo Smart is a concentrate of exclusive microbial strains from the Agriges Research and Developement, registered in an international reference microbial collection and selected for their high capacity **to fix atmospheric nitrogen and promote plant photosynthesis**.

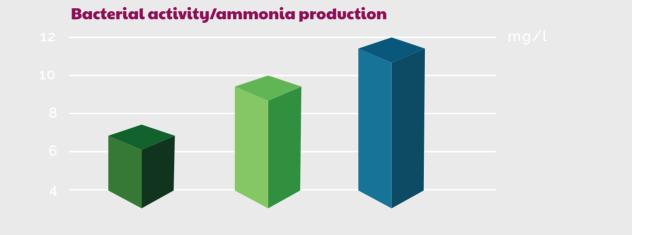
The goal is increased **nitrogen availability** for the crop and improved **fertiliser use efficiency**. This is achieved through the 'multi-site' synergy between the unique Azo Smart consortium and the crop, which is stimulated to photosynthesise more efficiently and maxi-mise production performance.

* Exclusive strain isolated and deposited by Agriges in an international reference microbial collection.

EXCLUSIVE PRODUCTION TECHNOLOGY

The microorganisms contained in Azo Smart were isolated, identified and characterised following the intensive collaborations of Agriges with Italian and international research institutes and universities. The best microorganisms capable of performing intensive **atmospheric nitrogen fixation and Plant Growth Promotion** activities were chosen for Azo Smart.

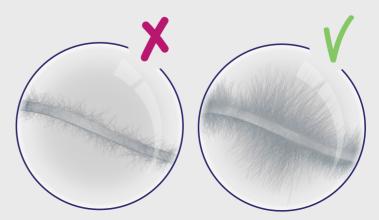
Microorganism	Action	Effect on the plant	Agronomic Advantage			
Arbuscular mycorrhizal fungi						
Glomus spp.	A fungus that forms a symbiotic associa- tion with the roots of most crops, which helps in phosphorus supply and protects them from stress	 Stimulation of root growth Increased water and nutrient interception 	 Increased resistance to stress Reduced chemical fertiliser inputs 			
Plant growth-promoting rhizobacteria						
Azotobacter chrococcum LS132*	Nitrogen-fixing bacterium capable of producing a durable and sustainable source of ammonia nitrogen for the plant, with both foliar and root action. It is also capable of stimulating plant photosyn- thetic activity.	 Biological nitrogen fixation Increased photosynthetic activity 	 Reduction of chemical fertiliser inputs Stimulating plant growth 			
Azospirillum brasilense AGS608*	Bacterium capable of spreading within the plant parenchyma, fixing atmospheric nitrogen and making it readily available to the crop. It also produces phytohormones (IAA) that stimulate root growth and functionality.	 Biological nitrogen fixation Photosynthetic accelerator 	 Reduction of chemical fertiliser inputs Stimulating plant growth 			
Bacillus amyloliquefaciens AGS282*	Bacterium capable of settling and multiplying very quickly on all plant organs, behaving as a 'substrate competi- tor'. It also produces natural hormones (especially auxins) by stimulating plant growth and stress resistance mechanisms.	 Plant growth stimulation Plant well-being stimulator 	 Increased resistance to stress More rational input of technical means 			
Selected fungal isolates						
Trichoderma longibrachiatum AGS799*	Fungus characterised by a strong ability to adapt to all surfaces (roots, stem and leaves) and with very rapid growth. The symbiosis with this microorganism stimulates the root system exponentially. It is also capable of producing siderophores and indolacetic acid (IAA).	 Increased water and nutrient uptake Photosynthetic accelerator 	 Increased resistance to stress Stimulation of plant growth 			


EXPERIMENTAL RESULTS

Identification and characterisation of micro-organisms Plant Growth Promotion

During the Research and Development activities conducted by Agriges in collaboration with Italian universities, microbiological research laboratories and foreign resear-ch institutes, the microorganisms contained in AZO SMART were **identified** and **characterised** for their Plant Growth Promotion, resistance to environmental stresses and ability to fix atmospheric nitrogen assimilating nutrients, especially nitrogen.

The results showed that, in a microbial collection of bacteria belonging to different genera (*Bacillus, Azotobacter, Pseudomonas*) characterised by strong PGP action, the micro-organism Agriges *Azotobacter chrococcum* strain LS132 was the one **releasing the highest amount of ammoniacal nitrogen**, an indicator of nitrogen fixation activi-ty,compared to the other strains analysed.


Company	Code	Species	Thesis
	RHF6	Bacillus amyloliquefaciens	RHF6
	RHFS10	Bacillus vallismortis	RHFS10
Agriges	LS132	Azotobacter chrococcum	LS132

ROOT GROWTH STIMULATION

Further results also highlighted the synergistic effect of the microorganisms chosen by Agriges for the product Azo Smart in the biostimulation of the root system. Indeed, it was seen that the association of *Azotobacter chrococcum* strain LS132 and *Bacillus amyloliquefaciens* strain AGS282:

- produces seedlings with longer primary roots on average;
- influences the number of lateral rootlets;
- improves resistance to environmental stresses (especially drought).

COMPOSITION Rhizosphere bacteria (selected bacterial isolates) including					
Azotobacter chrococcum LS132 *	1.0 x 10 ⁸ CFU/g				
Azospirillum brasilense AGS608*	1.0 x 108 CFU/g				
Bacillus amyloliquefaciens AGS282 *	1.0 x 10 ⁸ CFU/g				
Organic soil improver: simple, non-composted vegetable soil improver					
Mycorrhizae (Glomus spp.)	5%				
Selected fungal isolates including:					
Trichoderma longibrachiatum AGS799*	1.0 x 107 CFU/g				

* Exclusive strain isolated and deposited by Agriges in an international reference microbial collection

DOSES AND INSTRUCTIONS FOR USE

Crops	Foliar application	Dose g/ha	Reduction of Fertilizer Units (Nitrogen)
TREE CROPS	During the growth phase	350	30-35 units*
HORTICULTURAL CROPS	During the growth phase	350	30-35 units*
INDUSTRIAL CROPS	Throughout the entire vegetative cycle	350	30-35 units*
CEREALS	End of tillering - beginning of shoot emergence	350	30-35 units*

The aforementioned doses have a purely indicative value and can therefore vary in relation to the soil and climate features of each area. Indicative values, they may vary according to the soil and climate characteristics of each area and the overall state of well-being of the crop.

WARNINGS

The product contains living microorganisms, present in spore-forming form, resistant to temperatures down to -20°C. With temperatures between 8 and 30 °C, the growth of the microbial consortium increases exponentially. Avoid inhaling dust. Agriges declines all responsibility for incorrect storage and/or handling.

Formulation wettable powder

Packages 0,7 - 1,4 - 2,8 - 5,6 kg

рH approx. 6,8

Conducibility approx. 18,2 dS/m

Exclusive Agriges Mic production technology

sin

Allowed in Organic Farming

AGRIGES srl Contrada Selva di Sotto Zona Industriale 82035 San Salvatore Telesino (BN) ITALY

 TEL. +39 0824 947065

 FAX. +39 0824 947442

www.agriges.com info.contact@agriges.com